Stability of Analytic and Numerical Solutions for Differential Equations with Piecewise Continuous Arguments

نویسندگان

  • Minghui Song
  • M. Z. Liu
  • Norio Yoshida
چکیده

and Applied Analysis 3 Theorem 2.3. Suppose that f : R ×Rd×Rd → ×Rd is continuous, a, b : R → R are continuous, strictly increasing functions satisfying a 0 b 0 0. Let constants M > 0 and q ∈ 0, 1 exist such that for n ∈ Z, a |x| ≤ V t, x ≤ b |x| , t ∈ R, x ∈ R, 2.3 V n 1, x n 1 ≤ qV n, x n , 2.4 V t, x t ≤ MV n, x n , for t ∈ n, n 1 . 2.5 Then the trivial solution of 1.1 is asymptotically stable. Proof. Let ε > 0 be given, then there exist ε1 > 0 and δ δ ε such that ε1 ≤ ε, a ε1 ≤ a ε /M, and b δ < a ε1 . Let |x0| < δ, and Let x t be a solution of 1.1 , then it follows from 2.4 that the function V n, x n is decreasing with respect to n. Making use of 2.3 and 2.4 , we obtain successively the inequalities for any integer n, a |x n | ≤ V n, x n ≤ V 0, x0 ≤ b δ < a ε1 , 2.6 so |x n | < ε1 ≤ ε. From 2.3 , 2.5 , and 2.6 , we have for t ∈ n, n 1 , a |x t | ≤ V t, x t ≤ MV n, x n < Ma ε1 ≤ a ε . 2.7 Hence, |x t | < ε for all t > 0, which implies that the trivial solution is stable. From 2.3 , 2.4 , and 2.5 , we have for t ∈ n, n 1 , a |x t | ≤ V t, x t ≤ MV n, x n ≤ MqV n − 1, x n − 1 ≤ · · · ≤ MqV 0, x 0 . 2.8 Hence, limt→∞x t 0. Example 2.4. The trivial solution of the following system: ẋ1 t − tan x1 t 2 x2 t , ẋ2 t − sinx1 t − x2 2 t x2 t − x2 t 2 t > 0, 2.9 is asymptotically stable. 4 Abstract and Applied Analysis Proof. Let h > 0 be a constant such that |x| ≤ h, V t, x t 1 − cosx1 t x2 2 t /2 , a s s/h mins≤|x|≤hV x , b s max|x|≤sV x s,M 1, and q e−1, then V̇ t, x t sinx1 t ẋ1 t x2 t ẋ2 t − sinx1 t tan x1 t 2 x2 t sinx1 t − x2 t sinx1 t − x 2 2 t x 2 2 t − x2 2 t 2 ≤ −2sin21 t 2 − x 2 2 t 2 cosx1 t − 1 − x2 2 t 2 −V t, x t . 2.10 Hence, for t ∈ n, n 1 , we have V t, x t ≤ e− t−n V n, x n ≤ MV n, x n , V n 1, x n 1 ≤ qV n, x n . 2.11 Therefore, the trivial solution is asymptotically stable. In the following, we consider the following equation: x′ t a t x t b t x t , x 0 x0, 2.12 where a t and b t are continuous. Theorem 2.5. The trivial solution of 2.12 is asymptotically stable if there exist constants M > 0 and q ∈ 0, 1 such that for n 1, 2, . . ., max n≤t 0 , then for t ∈ n, n 1 , ∣ ∣ ∣ ∣ ∣ e ∫ t n a s ds e ∫ t n a s ds ∫ t n e− ∫s n a u b s ds ∣ ∣ ∣ ∣ ∣ ≤ e ∫ t n a s ds e ∫ t n a s α ∫ t n e− ∫s n a u du −a s ds e ∫ t n a s ds αe ∫ t n a s dse− ∫s n a u du ∣ ∣ ∣ t n e ∫ t n a s ds αe ∫ t n a s ds [ e− ∫ t n a s ds − e− ∫n n a s ds ] e ∫ t n a s ds α − αe ∫ t n a s ds α 1 − α e ∫ t n a s . 2.21 Therefore, we have the following corollary. 6 Abstract and Applied Analysis Corollary 2.7. Assume that a t ≤ −β, |b t | ≤ −αa t , then the trivial solution of 2.12 is asymptotically stable if 0 ≤ α < 1, β > 0. 2.22 3. The Stability of the Discrete System In this section, we will consider the discrete system with the form xkm l 1 φ km l, xkm l, xkm l−1, . . . , xkm , 3.1 where k ∈ Z, l 0, 1, . . . , m − 1. We assume that φ km l, 0, 0, . . . , 0 0 k ∈ Z, l 0, 1, . . . , m − 1 and 3.1 has a unique solution. The solution x n ≡ 0 is the trivial solution of 3.1 . Like 2.1 , we can define the stability and asymptotical stability. Theorem 3.1. Suppose φ : R × R × R × · · · × R → R are continuous, a, b : R → R are continuous, strictly increasing functions satisfying a 0 b 0 0. Let constants M > 0 and q ∈ 0, 1 exist such that for k ∈ Z a |x| ≤ V t, x ≤ b |x| , 3.2 V ( k 1 m,x k 1 m ) ≤ qV km, xkm , 3.3 V km l, xkm l ≤ MV km, xkm , l 0, 1, . . . , m − 1. 3.4 Then the trivial solution of 3.1 is asymptotically stable. Proof. Firstly, we will prove the stability. Let ε > 0 be given, then there exists a ε1 > 0 and δ δ ε such that ε1 ≤ ε, a ε1 ≤ a ε /M, and b δ < a ε1 . Let |x0| < δ, and Let xkm l be a solution of 3.1 , then it follows from 3.3 that the function V km, xkm is nonincreasing with respect to k. Making use of 3.2 and 3.3 , we obtain successively the inequalities a |xkm| ≤ V km, xkm ≤ V 0, x0 ≤ b δ < a ε1 , 3.5 so |xkm| < ε1 ≤ ε. From 3.2 , 3.4 , and 3.5 a |xkm l| ≤ V km l, xkm l ≤ MV km, xkm < Ma ε1 ≤ a ε . 3.6 Therefore, for all k ∈ Z, l 0, 1, . . . , m − 1, |xkm l| < ε. Abstract and Applied Analysis 7 Nextly, we will prove the asymptotic stability. We have, from 3.2 and 3.4 ,and Applied Analysis 7 Nextly, we will prove the asymptotic stability. We have, from 3.2 and 3.4 , a |xkm l| ≤ V km l, xkm l ≤ MV km, xkm ≤ MqV ( k − 1 m,x k−1 m ) ≤ · · · ≤ MqV 0, x 0 , 3.7 so limk→∞V km, xkm 0. The proof is complete. In the rest of the section, we consider the following scalar system: xkm l 1 f akm l 1, akm l, . . . , akm, bkm l 1, bkm l, . . . , bkm xkm l g akm l 1, akm l, . . . , akm, bkm l 1, bkm l, . . . , bkm xkm. 3.8 Let V t, x |x t | a |x| b |x| . The following corollary is easy to prove. Corollary 3.2. If there exists a α ∈ 0, 1 , such that for k ∈ Z, l 0, 1, . . . , m, Sk,l ∣ ∣f akm l 1, . . . , akm, bkm l 1, . . . , bkm ∣ ∣ ∣ ∣g akm l 1, . . . , akm, bkm l 1, . . . , bkm ∣ ∣ ≤ α, 3.9 then the trivial solution of 3.1 is asymptotically stable. 4. The Stability of the Numerical Solution In this section, we will investigate the numerical asymptotic stability of θ-methods. 4.1. θ-Methods Let h 1/m be a given stepsize with integer m ≥ 1 and the gridpoints tn nh n 0, 1, . . . . The linear θ-method applied to 1.1 can be represented as follows: xn 1 xn h { θf ( n 1 h, xn 1, x n 1 h ) 1 − θ f(nh, xn, x nh )} , 4.1 and the one-leg θ-method xn 1 xn h { f ( n θ h, x n θ h , x n θ h )} . 4.2 8 Abstract and Applied Analysis Table 1: Linear θ-methods for problem 5.1 . m θ 0 θ 1/2 θ 1 AE RE AE RE AE RE 3 1.8930E − 3 6.5172E − 1 1.9237E − 4 6.6228E − 2 3.0508E − 3 1.0503E − 0 5 1.2740E − 3 4.3861E − 1 6.9633E − 5 2.3973E − 2 1.6936E − 3 5.8308E − 1 10 6.8950E − 4 2.3738E − 1 1.7448E − 5 6.0071E − 3 7.9471E − 4 2.7360E − 1 20 3.5792E − 4 1.2322E − 1 4.3646E − 6 1.5026E − 3 3.8424E − 4 1.3229E − 1 50 1.4633E − 4 5.0378E − 2 6.9845E − 7 2.4046E − 4 1.5054E − 4 5.1828E − 2 100 7.3691E − 5 2.5370E − 2 1.7462E − 7 6.0117E − 5 7.4744E − 5 2.5733E − 2 Ratio 1.9857 1.9857 3.9998 3.9999 2.0141 2.0141 50 100 150 200 250 300 350 400 450 500 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 1: Linear θ-method with θ 0 for 5.1 . Here, n 0, 1, . . . , θ is a parameter with 0 ≤ θ ≤ 1, specifying the method, x t denotes an approximation to x t , and x t is an approximation to x t defined by x t t − nh h xn 1 n 1 h − t h xn, for nh < t ≤ n 1 h, n 0, 1, . . . . 4.3 4.2. Numerical Stability Applying 4.1 and 4.2 to 2.12 , we arrive at the following recurrence relations, respectively: xn 1 xn h { θ ( a tn 1 xn 1 b tn 1 x n 1 h ) 1 − θ ( a tn xn b tn x nh )} , xn 1 xn h { a tn θ θxn 1 1 − θ xn b tn θ x n θ h } . 4.4 Abstract and Applied Analysis 9 Table 2: One-leg θ-methods for problem 5.1 . m θ 0 θ 1/2 θ 1 AE RE AE RE AE RE 3 1.8930E − 3 6.5172E − 1 1.4260E − 4 4.9094E − 2 3.0508E − 3 1.0503E 000 5 1.2740E − 3 4.3861E − 1 5.1570E − 5 1.7754E − 2 1.6936E − 3 5.8308E − 1 10 6.8950E − 4 2.3738E − 1 1.2917E − 5 4.4470E − 3 7.9471E − 4 2.7360E − 1 20 3.5792E − 4 1.2322E − 1 3.2307E − 6 1.1123E − 3 3.8424E − 4 1.3229E − 1 50 1.4633E − 4 5.0378E − 2 5.1699E − 7 1.7799E − 4 1.5054E − 4 5.1828E − 2 100 7.3691E − 5 2.5370E − 2 1.2925E − 7 4.4498E − 5 7.4744E − 5 2.5733E − 2 Ratio 1.9857 1.9857 3.9999 4.0000 2.0141 2.0141and Applied Analysis 9 Table 2: One-leg θ-methods for problem 5.1 . m θ 0 θ 1/2 θ 1 AE RE AE RE AE RE 3 1.8930E − 3 6.5172E − 1 1.4260E − 4 4.9094E − 2 3.0508E − 3 1.0503E 000 5 1.2740E − 3 4.3861E − 1 5.1570E − 5 1.7754E − 2 1.6936E − 3 5.8308E − 1 10 6.8950E − 4 2.3738E − 1 1.2917E − 5 4.4470E − 3 7.9471E − 4 2.7360E − 1 20 3.5792E − 4 1.2322E − 1 3.2307E − 6 1.1123E − 3 3.8424E − 4 1.3229E − 1 50 1.4633E − 4 5.0378E − 2 5.1699E − 7 1.7799E − 4 1.5054E − 4 5.1828E − 2 100 7.3691E − 5 2.5370E − 2 1.2925E − 7 4.4498E − 5 7.4744E − 5 2.5733E − 2 Ratio 1.9857 1.9857 3.9999 4.0000 2.0141 2.0141 50 100 150 200 250 300 350 400 450 500 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 2: Linear θ-method with θ 1/2 for 5.1 . Let n km l l 0, 1, . . . , m − 1 , then we define x tn δh , 0 ≤ δ ≤ 1, as xkm according to Definition 1.1. As a result, 4.4 reduce to xkm l 1 1 h 1 − θ a tkm l 1 − hθa tkm l 1 xkm l hθb tkm l 1 h 1 − θ b tkm l 1 − hθa tkm l 1 xkm, xkm l 1 [ 1 ha tkm l θ 1 − hθa tkm l θ ] xkm l hb tkm l θ 1 − hθa tkm l θ xkm. 4.5 In fact, in each interval n, n 1 , 2.12 can be seen as ordinary differential equation. Hence, the θ-methods are convergent of order 1 if θ / 1/2 and order 2 if θ 1/2. Definition 4.1. 1 The numerical methods are called asymptotically stable if there exists an h0 > 0, such that xn → 0 as n → ∞ for any given x0 and any stepsize h < h0. 2 The numerical methods are called general asymptotically stable if xn → 0 as n → ∞ for any given x0 and any stepsize. 10 Abstract and Applied Analysis 50 100 150 200 250 300 350 400 450 500 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 3: One-leg θ-method with θ 1/2 for 5.2 . 50 100 150 200 250 300 350 400 450 500 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 4: One-leg θ-method with θ 1 for 5.2 . Theorem 4.2. Assume that a t ≤ −β, |b t | ≤ −αa t β > 0, 0 ≤ α < 1 , and there exists a r > 0 such that −r ≤ a t , then 1 the linear θ-method and the one-leg θ-method are asymptotically stable if h < 1/ 1 − θ r, 2 the one-leg θ-method is general asymptotically stable if 1 a/2 ≤ θ ≤ 1, and the linear θ-method is general asymptotically stable if 1 a/2 ≤ θ ≤ 1 and a t is nonincreasing. Abstract and Applied Analysis 11and Applied Analysis 11 50 100 150 200 250 300 350 400 450 500 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 5: One-leg θ-method with θ 0 for 5.3 . Proof. Denote akm l a tkm l , akm l θ a tkm l θ , bkm l b tkm l , and bkm l θ b tkm l θ . 1 For any integer k, and l 0, 1, . . . , m − 1, we have, from h < 1/ 1 − θ r, 1 h 1 − θ akm l > 0, 1 h 1 − θ akm l θ > 0. 4.6 For the linear θ-method, Sk,l ∣ ∣ ∣ ∣ 1 h 1 − θ akm l 1 − θhakm l 1 θhbkm l 1 1 − θhakm l 1 1 − θ hbkm l 1 − θhakm l 1 ∣ ∣ ∣ ∣ ≤ 1 h 1 − θ akm l − αθhakm l 1 − α 1 − θ hakm l 1 − θhakm l 1 1 1 − θ 1 − α hakm l θ 1 − α hakm l 1 1 − θhakm l 1 ≤ 1 − 1 − θ 1 − α hβ − θ 1 − α hβ 1 θhr 1 − 1 − α hβ 1 θhr < 1. 4.7 12 Abstract and Applied Analysis 50 100 150 200 250 300 350 400 450 500 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 6: Linear θ-method with θ 1 for 5.3 . For the one-leg θ-method, Sk,l ∣ ∣ ∣ ∣ 1 hakm l θ 1 − θhakm l θ hbkm l θ 1 − θhakm l θ ∣ ∣ ∣ ∣ ≤ 1 1 − α hakm l θ 1 − θhakm l θ ≤ 1 − 1 − α hβ 1 θhβ < 1. 4.8 2 For the linear θ-method, if 1 1 − θ hakm l ≥ 0, then we have, from 1 , Sk,l ≤ 1 1 − θ 1 − α hakm l θ 1 − α hakm l 1 1 − θhakm l 1 ≤ 1 − 1 − α hβ 1 θhr < 1. 4.9 If 1 1 − θ hakm l < 0, then since a t is nonincreasing, we have Sk,l ≤ −1 − 1 − θ 1 α hakm l − θ 1 α hakm l 1 1 − θhakm l 1 ≤ −1 − 1 α hakm l 1 1 − θakm l 1 ≤ −1 1 α hr 1 θhr < 1. 4.10 For one-leg θ-method, we have the following two cases. Abstract and Applied Analysis 13 If 1 1 − θ hakm l θ ≥ 0, then Sk,l ≤ 1 1 α hakm l θ / 1 − θhakm l θ ≤ 1 − 1 − α hβ / 1 θhβ < 1. If 1 1−θ hakm l θ < 0, then Sk,l ≤ −1 − 1 α hakm l θ / 1−θhakm l θ ≤ −1 1 α hr/ 1 θhr < 1. 5. Numerical Experiments In this section, we will give some examples to illustrate the conclusions in the paper. We consider the following three problems: ẋ t (−e−t − 1)x t e −t 1 3 x t , t > 0, x 0 1, 5.1and Applied Analysis 13 If 1 1 − θ hakm l θ ≥ 0, then Sk,l ≤ 1 1 α hakm l θ / 1 − θhakm l θ ≤ 1 − 1 − α hβ / 1 θhβ < 1. If 1 1−θ hakm l θ < 0, then Sk,l ≤ −1 − 1 α hakm l θ / 1−θhakm l θ ≤ −1 1 α hr/ 1 θhr < 1. 5. Numerical Experiments In this section, we will give some examples to illustrate the conclusions in the paper. We consider the following three problems: ẋ t (−e−t − 1)x t e −t 1 3 x t , t > 0, x 0 1, 5.1 ẋ t sin t − 2 x t e −t 2 x t , t > 0, x 0 1, 5.2 ẋ t (−e−t − 1)x t − 13x t , t > 0,x 0 1.5.3 It is easy to verify that the above examples satisfy the conditions of Theorem 4.2.Hence, the solutions of three equations are asymptotically stable according to Corollary 2.7.In Tables 1 and 2, we list the absolute errors AEs and the relative errors REs at t 10of the θ-methods for the first problem.We can see from these tables that the methods preservetheir orders of convergence.In Figures 1, 2, 3, 4, 5, and 6, we draw the numerical solutions of the θ-methods withm 50. It is easy to see that the numerical solutions are asymptotically stable.AcknowledgmentThis work is supported by the NSF of P.R. China no. 10671047References1 J. Wiener, “Differential equations with piecewise constant delays,” in Trends in the Theory and Practiceof Nonlinear Differential Equations, V. Lakshmikantham, Ed., pp. 547–552, Marcel Dekker, New York,NY, USA, 1983.2 J. Wiener, “Pointwise initial value problems for functional-differential equations,” inDifferential Equa-tions, I. W. Knowles and R. T. Lewis, Eds., pp. 571–580, North-Holland, New York, NY, USA, 1984.3 K. L. Cooke and J. Wiener, “Retarded differential equations with piecewise constant delays,” Journalof Mathematical Analysis and Applications, vol. 99, no. 1, pp. 265–297, 1984.4 S. M. Shah and J. Wiener, “Advanced differential equations with piecewise constant argument devia-tions,” International Journal of Mathematics and Mathematical Sciences, vol. 6, no. 4, pp. 671–703, 1983.5 J. Wiener, Generalized Solutions of Functional-Differential Equations, World Scientific, Singapore, 1993. 14Abstract and Applied Analysis6 M. Z. Liu, M. H. Song, and Z. W. Yang, “Stability of Runge-Kutta methods in the numerical solutionof equation u′ t au t a0u t ,” Journal of Computational and Applied Mathematics, vol. 166, no. 2, pp.361–370, 2004.7 M. H. Song, Z. W. Yang, and M. Z. Liu, “Stability of θ-methods for advanced differential equationswith piecewise continuous arguments,” Computers & Mathematics with Applications, vol. 49, no. 9-10,pp. 1295–1301, 2005.8 Z. Yang, M. Liu, and M. Song, “Stability of Runge-Kutta methods in the numerical solution of equa-tion u′ t au t a0u t a1u t 1 ,” Applied Mathematics and Computation, vol. 162, no. 1, pp.37–50, 2005.9 J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, Springer, NewYork, NY, USA, 1993.10 Y. Kuang,Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston,Mass, USA, 1993.11 T. Yoshizawa, Stability Theory by Liapunov’s Second Method, The Mathematical Society of Japan, Tokyo,Japan, 1966.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Piecewise Continuous Mild Solutions for Impulsive Functional Differential Equations with Iterated Deviating Arguments

The objective of this article is to prove the existence of piecewise continuous mild solutions to impulsive functional differential equation with iterated deviating arguments in a Banach space. The results are obtained by using the theory of analytic semigroups and fixed point theorems.

متن کامل

Stability of numerical solution for partial differential equations with piecewise constant arguments

In this paper, the numerical stability of a partial differential equation with piecewise constant arguments is considered. Firstly, the θ -methods are applied to approximate the original equation. Secondly, the numerical asymptotic stability conditions are given when the mesh ratio and the corresponding parameter satisfy certain conditions. Thirdly, the conditions under which the numerical stab...

متن کامل

Numerical Oscillations of Runge-Kutta Methods for Differential Equations with Piecewise Constant Arguments of Alternately Advanced and Retarded Type

The purpose of this paper is to study the numerical oscillations of Runge-Kutta methods for the solution of alternately advanced and retarded differential equations with piecewise constant arguments. The conditions of oscillations for the Runge-Kutta methods are obtained. It is proven that the Runge-Kutta methods preserve the oscillations of the analytic solution. In addition, the relationship ...

متن کامل

A Piecewise Approximate Method for Solving Second Order Fuzzy Differential Equations Under Generalized ‎Differentiability‎

In this paper a numerical method for solving second order fuzzy differential equations under generalized differentiability is proposed. This method is based on the interpolating a solution by piecewise polynomial of degree 4 in the range of solution. Moreover we investigate the existence, uniqueness and convergence of approximate solutions. Finally the accuracy of piecewise approximate method b...

متن کامل

Numerical Solutions of Stochastic Differential Equations with Piecewise Continuous Arguments under Khasminskii-Type Conditions

The main purpose of this paper is to investigate the convergence of the Euler method to stochastic differential equations with piecewise continuous arguments SEPCAs . The classical Khasminskiitype theorem gives a powerful tool to examine the global existence of solutions for stochastic differential equations SDEs without the linear growth condition by the use of the Lyapunov functions. However,...

متن کامل

Impulsive integrodifferential Equations and Measure of noncompactness

This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014